Fancy Fence

Input file:
Output file:
standard input
Time limit: standard output

Memory limit:

1 second
256 megabytes

Everybody knows that Balázs has the fanciest fence in the whole town. It's built up from N fancy sections. The sections are rectangles standing closely next to each other on the ground. The i th section has integer height h_{i} and integer width w_{i}.
We are looking for fancy rectangles on this fancy fence.
A rectangle is fancy if:

- its sides are either horizontal or vertical and have integer lengths
- the distance between the rectangle and the ground is integer
- the distance between the rectangle and the left side of the first section is integer
- it's lying completely on sections

What is the number of fancy rectangles?
This number can be very big, so we are interested in it modulo $10^{9}+7$.

Input

The first line contains $N\left(1 \leq N \leq 10^{5}\right)$ - the number of sections.
The second line contains N space-separated integers, the i th number is $h_{i}\left(1 \leq h_{i} \leq 10^{9}\right)$.
The third line contains N space-separated integers, the i th number is $w_{i}\left(1 \leq w_{i} \leq 10^{9}\right)$.

Output

You should print a single integer, the number of fancy rectangles modulo $10^{9}+7$. So the output range is $0,1,2, \ldots, 10^{9}+6$.

Scoring

Subtask	Points	Constraints
1	0	sample
2	12	$N \leq 50$ and $h_{i} \leq 50$ and $w_{i}=1$ for all i
3	13	$h_{i}=1$ or $h_{i}=2$ for all i
4	15	all h_{i} are equal
5	15	$h_{i} \leq h_{i+1}$ for all $i \leq N-1$
6	18	$N \leq 1000$
7	27	no additional constraints

Example

	standard input	standard output
2	12	
1	2	2

Note

The fence looks like this:

There are 5 fancy rectangles of shape:

There are 3 fancy rectangles of shape:

There is 1 fancy rectangle of shape:

There are 2 fancy rectangles of shape:

There is 1 fancy rectangle of shape:

